Menu

UMass Amherst boosts deep learning research with powerful new GPU cluster

February 9, 2017

AMHERST, Mass. – With a new cluster of specialized graphics processing units (GPUs) now installed at the MGHPCC, the University of Massachusetts Amherst is poised to attract the nation’s next crop of top Ph.D. students and researchers in such fields as artificial intelligence, computer vision and natural language processing, says associate professor Erik Learned-Miller of the College of Information and Computer Sciences (CICS).

Erik Learned-Miller is Associate Professor of Computer Science at UMass Amherst - image courtesy: UMass Amherst.

Erik Learned-Miller leads the UMass Amherst’s new GPU cluster housed at the Massachusetts Green High Performance Computing Center in nearby Holyoke – image credit: UMass Amherst.

Lead researcher Learned-Miller says, “GPUs are critical for modern computer science research because they have such enormous computational power. They can address extreme computational needs, solving problems 10 times faster than conventional processors, in days rather than months. They can run neural network algorithms that are prohibitively slow on lesser machines. Our new network of 400 GPUs is unusually large for an academic cluster.”
UMass Amherst’s new GPU cluster, housed at the Massachusetts Green High Performance Computing Center in Holyoke, is the result of a five-year, $5 million grant to the campus from Gov. Charlie Baker’s administration and the Massachusetts Technology Collaborative last year. It represents a one-third match to a $15 million gift supporting data science and cybersecurity research from the MassMutual Foundation of Springfield.
Deep learning research uses neural network algorithms to make sense of large data sets. The approach teaches computers through trial and error to categorize data, much as human brains do. “Deep learning is a revolutionary approach to some of the hardest problems in machine reasoning, and is the ‘magic under the hood’ of many commercial products and services,” says Learned-Miller. “Google Translate, for example, produced more accurate and natural translations thanks to a novel deep-learning approach.”
Andrew McCallum, professor and founder of the Center for Data Science at UMass Amherst, says, “This is a transformational expansion of opportunity and represents a whole new era for the center and our college. Access to multi-GPU clusters of this scale and speed strengthens our position as a destination for deep learning research and sets us apart among universities nationally.”
He says the campus currently has research projects that apply deep learning techniques to computational ecology, face recognition, graphics, natural language processing and many other areas.
The state funds must be used for computing hardware at UMass Amherst, its Springfield Center for Cybersecurity and for terminals at Mount Holyoke College and the UMass Center in Boston, the researchers note.
Learned-Miller says he and colleagues are now in the first year of the grant, during which about $2 million has been spent on two clusters: the GPU cluster dubbed “Gypsum” and a smaller cluster of traditional CPU machines dubbed “Swarm II.” Gypsum consists of 400 GPUs installed on 100 computer nodes, along with a storage system and a backup system. It is configured with a leading software package for deploying, monitoring and managing such clusters.
Not only do the researchers hope the GPUs will accelerate deep learning research and train a new generation of experts at CICS, but an important overall goal is to foster collaborations between UMass Amherst and industry. For example, if MassMutual data scientists design a practical problem with high computational needs, they can collaborate with sponsored UMass faculty and graduate students to solve it on the Gypsum cluster.
This story was originally published by UMass Amherst News and Media Relations.
Story Image: Graphics Processing Unit – Image courtesy: UMass Amherst


Links

Erik Learned-Miller is Associate Professor of Computer Science at UMass Amherst.
 
 

Research projects

A Future of Unmanned Aerial Vehicles
Yale Budget Lab
Volcanic Eruptions Impact on Stratospheric Chemistry & Ozone
The Rhode Island Coastal Hazards Analysis, Modeling, and Prediction System
Towards a Whole Brain Cellular Atlas
Tornado Path Detection
The Kempner Institute – Unlocking Intelligence
The Institute for Experiential AI
Taming the Energy Appetite of AI Models
Surface Behavior
Studying Highly Efficient Biological Solar Energy Systems
Software for Unreliable Quantum Computers
Simulating Large Biomolecular Assemblies
SEQer – Sequence Evaluation in Realtime
Revolutionizing Materials Design with Computational Modeling
Remote Sensing of Earth Systems
QuEra at the MGHPCC
Quantum Computing in Renewable Energy Development
Pulling Back the Quantum Curtain on ‘Weyl Fermions’
New Insights on Binary Black Holes
NeuraChip
Network Attached FPGAs in the OCT
Monte Carlo eXtreme (MCX) – a Physically-Accurate Photon Simulator
Modeling Hydrogels and Elastomers
Modeling Breast Cancer Spread
Measuring Neutrino Mass
Investigating Mantle Flow Through Analyses of Earthquake Wave Propagation
Impact of Marine Heatwaves on Coral Diversity
IceCube: Hunting Neutrinos
Genome Forecasting
Global Consequences of Warming-Induced Arctic River Changes
Fuzzing the Linux Kernel
Exact Gravitational Lensing by Rotating Black Holes
Evolution of Viral Infectious Disease
Evaluating Health Benefits of Stricter US Air Quality Standards
Ephemeral Stream Water Contributions to US Drainage Networks
Energy Transport and Ultrafast Spectroscopy Lab
Electron Heating in Kinetic-Alfvén-Wave Turbulence
Discovering Evolution’s Master Switches
Dexterous Robotic Hands
Developing Advanced Materials for a Sustainable Energy Future
Detecting Protein Concentrations in Assays
Denser Environments Cultivate Larger Galaxies
Deciphering Alzheimer’s Disease
Dancing Frog Genomes
Cyber-Physical Communication Network Security
Avoiding Smash Hits
Analyzing the Gut Microbiome
Adaptive Deep Learning Systems Towards Edge Intelligence
Accelerating Rendering Power
ACAS X: A Family of Next-Generation Collision Avoidance Systems
Neurocognition at the Wu Tsai Institute, Yale
Computational Modeling of Biological Systems
Computational Molecular Ecology
Social Capital and Economic Mobility
All Research Projects

Collaborative projects

ALL Collaborative PROJECTS

Outreach & Education Projects

See ALL Scholarships
100 Bigelow Street, Holyoke, MA 01040