Menu

Biotech firm identifies four drugs that could be used against COVID-19

April 8, 2021

Massachusetts-based biotech company ARIScience uses MGHPCC supercomputers to identify existing drugs able to break up SARS-CoV-2 – the virus that causes COVID-19 – at the molecular level.

Read this story at covid19-hpc-consortium.org
The ongoing rollout of vaccines against COVID-19 has sparked hope of life soon getting back to normal. But vaccines are not the only piece of the pandemic’s jigsaw puzzle. We also need new drugs to fight the disease.
One Massachusetts-based biotech company called ARIScience has used supercomputers to identify existing drugs able to break up SARS-CoV-2 – the virus that causes COVID-19 – at the molecular level. Thanks to computer simulations, followed by validation through statistical analysis on a 1.5MM patient dataset, the researchers have found four FDA-approved drugs that could be repurposed for COVID-19.
These drugs are Metformin, Hydrochlorothiazide, Triamcinolone, and Amoxicillin. They could reduce COVID-19 mortality odds by 25 percent, says the lead researcher, Joy Alamgir. The results are currently undergoing a peer-review process.
While the researchers started by using their own supercomputing cluster, they quickly realized that they needed additional computing resources. They then applied for extra resources via the COVID-19 HPC Consortium – and were granted access to the Texas Advanced Computing Center (TACC) and Pittsburgh Supercomputing Center (PSC).
Separately they requested access to the University of North Dakota, the University of Maine System, and Massachusetts Green High Performance Computing Center (MGHPCC) centers – all of whom granted access to their supercomputing systems. “We would not have completed the simulations ourselves, just because of the sheer computing power needed by our novel algorithms,” says Alamgir.
“One major benefit of the clusters we used is that they are all SLURM-based,” he adds. SLURM stands for Simple Linux Utility for Resource Management – a free, open-source cluster management and job scheduling system for Linux clusters. “It allowed us to easily spread computing load across these clusters without reworking our process. Plus, each node of the clusters allowed a high degree of parallelization, allowing our algorithms to use up 85 to 90 percent of the processing power capacity of the specific nodes we were allocated.”
The first step was to simulate the drugs needed to fight the coronavirus that causes COVID-19. The researchers collated SARS-CoV-2 protein structures of suitable resolution from published sources and used 1,513 in-silico structures of drug active compounds. Then using ARIScience’s novel simulation platform, they performed energy analysis of 11 SARS-CoV-2 proteins at neutral pH against all 1,513 simulated drug active compounds and came up with a shortlist of 18 candidate drugs to assess from the simulation results.
The scientists then took these 18 molecules through one of the largest COVID-19 patient datasets, the National COVID Cohort Collaborative (N3C) – and found that four of them were associated with 25 percent reduction in COVID-19-associated mortality. The team used state-of-the-art statistical techniques to set up patient cohorts, where one was exposed to the drug, and the other one was not.
“As these are existing drugs that are already on the market, this opens the door to additional scrutiny from scientists and clinicians as off-label use for such drugs would be within reach,” says Alamgir. “The results provide evidence that molecular interruption that can slow viral activity a bit can potentially give the body a little bit more time to mount an appropriate viral response.”
The next step for the team is outreach to other clinicians and scientists. “The immediate impact is that our results give information to other researchers on potential approaches they could take to reduce COVID-19 mortality odds,” says Alamgir. And, he adds, the four drugs are not ARIScience’s drugs, so the company has no monetary interest in increasing their usage. “As the research gets validated through additional eyes, it could open the door for a COVID-19 treatment possibility while vaccination campaigns play catchup.”
The research also shows that the new platform could provide high accuracy results in disease pathway interruption, Alamgir says, by interrupting proteins – and could lead to novel approaches to counter-viral, bacterial or oncological pathways.
For example, he says, his team has already started searching for novel and non-novel compounds to address resistant bacterial strains. Bacterial resistance is a huge health challenge that requires new antibiotics but developing them is hard. The strains Alamgir’s team plans to tackle include Methicillin-resistant Staphylococcus aureus (MRSA) bacterium that causes infections in various parts of the human body, vancomycin-resistant Staphylococcus aureus (VRSA), and a bacterium called Mycobacterium tuberculosis, whose resistant strains are staging a comeback for TB – an ages-old scourge.

Related

Checking the Medicine Cabinet to Interrupt Covid-19 at the Molecular Level MGHPCC News

Previous Post:
Next Post:

Research projects

A Future of Unmanned Aerial Vehicles
Yale Budget Lab
Volcanic Eruptions Impact on Stratospheric Chemistry & Ozone
The Rhode Island Coastal Hazards Analysis, Modeling, and Prediction System
Towards a Whole Brain Cellular Atlas
Tornado Path Detection
The Kempner Institute – Unlocking Intelligence
The Institute for Experiential AI
Taming the Energy Appetite of AI Models
Surface Behavior
Studying Highly Efficient Biological Solar Energy Systems
Software for Unreliable Quantum Computers
Simulating Large Biomolecular Assemblies
SEQer – Sequence Evaluation in Realtime
Revolutionizing Materials Design with Computational Modeling
Remote Sensing of Earth Systems
QuEra at the MGHPCC
Quantum Computing in Renewable Energy Development
Pulling Back the Quantum Curtain on ‘Weyl Fermions’
New Insights on Binary Black Holes
NeuraChip
Network Attached FPGAs in the OCT
Monte Carlo eXtreme (MCX) – a Physically-Accurate Photon Simulator
Modeling Hydrogels and Elastomers
Modeling Breast Cancer Spread
Measuring Neutrino Mass
Investigating Mantle Flow Through Analyses of Earthquake Wave Propagation
Impact of Marine Heatwaves on Coral Diversity
IceCube: Hunting Neutrinos
Genome Forecasting
Global Consequences of Warming-Induced Arctic River Changes
Fuzzing the Linux Kernel
Exact Gravitational Lensing by Rotating Black Holes
Evolution of Viral Infectious Disease
Evaluating Health Benefits of Stricter US Air Quality Standards
Ephemeral Stream Water Contributions to US Drainage Networks
Energy Transport and Ultrafast Spectroscopy Lab
Electron Heating in Kinetic-Alfvén-Wave Turbulence
Discovering Evolution’s Master Switches
Dexterous Robotic Hands
Developing Advanced Materials for a Sustainable Energy Future
Detecting Protein Concentrations in Assays
Denser Environments Cultivate Larger Galaxies
Deciphering Alzheimer’s Disease
Dancing Frog Genomes
Cyber-Physical Communication Network Security
Avoiding Smash Hits
Analyzing the Gut Microbiome
Adaptive Deep Learning Systems Towards Edge Intelligence
Accelerating Rendering Power
ACAS X: A Family of Next-Generation Collision Avoidance Systems
Neurocognition at the Wu Tsai Institute, Yale
Computational Modeling of Biological Systems
Computational Molecular Ecology
Social Capital and Economic Mobility
All Research Projects

Collaborative projects

ALL Collaborative PROJECTS

Outreach & Education Projects

See ALL Scholarships
100 Bigelow Street, Holyoke, MA 01040