Menu

IBM gives artificial intelligence computing at MIT a lift

August 27, 2019

Nearly $12 million machine, to be housed at the MGHPCC, will let MIT researchers run more ambitious AI models.
Read this story at MIT News
IBM designed Summit, the fastest supercomputer on Earth, to run the calculation-intensive models that power modern artificial intelligence (AI). Now MIT is about to get a slice.
IBM pledged earlier this year to donate an $11.6 million computer cluster to MIT modeled after the architecture of Summit, the supercomputer it built at Oak Ridge National Laboratory for the U.S. Department of Energy. The donated cluster is expected to come online this fall when the MIT Stephen A. Schwarzman College of Computing opens its doors, allowing researchers to run more elaborate AI models to tackle a range of problems, from developing a better hearing aid to designing a longer-lived lithium-ion battery.
“We’re excited to see a range of AI projects at MIT get a computing boost, and we can’t wait to see what magic awaits,” says John E. Kelly III, executive vice president of IBM, who announced the gift in February at MIT’s launch celebration of the MIT Schwarzman College of Computing.
IBM has named the cluster Satori, a Zen Buddhism term for “sudden enlightenment.” Physically the size of a shipping container, Satori is intellectually closer to a Ferrari, capable of zipping through 2 quadrillion calculations per second. That’s the equivalent of each person on Earth performing more than 10 million multiplication problems each second for an entire year, making Satori nimble enough to join the middle ranks of the world’s 500 fastest computers.
Rapid progress in AI has fueled a relentless demand for computing power to train more elaborate models on ever-larger datasets. At the same time, federal funding for academic computing facilities has been on a three-decade decline. Christopher Hill, director of MIT’s Research Computing Project, puts the current demand at MIT at five times what the Institute can offer.
“IBM’s gift couldn’t come at a better time,” says Maria Zuber, a geophysics professor and MIT’s vice president of research. “The opening of the new college will only increase demand for computing power. Satori will go a long way in helping to ease the crunch.”
The computing gap was immediately apparent to John Cohn, chief scientist at the MIT-IBM Watson AI Lab, when the lab opened last year. “The cloud alone wasn’t giving us all that we needed for challenging AI training tasks,” he says. “The expense and long run times made us ask, could we bring more compute power here, to MIT?”
It’s a mission Satori was built to fill, with IBM Power9 processors, a fast internal network, a large memory, and 256 graphics processing units (GPUs). Designed to rapidly process video-game images, graphics processors have become the workhorse for modern AI applications. Satori, like Summit, has been configured to wring as much power from each GPU as possible.
IBM’s gift follows a history of collaborations with MIT that have paved the way for computing breakthroughs. In 1956, IBM helped launch the MIT Computation Center with the donation of an IBM 704, the first mass-produced computer to handle complex math. Nearly three decades later, IBM helped fund Project Athena, an initiative that brought networked computing to campus. Together, these initiatives spawned time-share operating systems, foundational programming languages, instant messaging, and the network-security protocol, Kerberos, among other technologies.
More recently, IBM agreed to invest $240 million over 10 years to establish the MIT-IBM Watson AI Lab, a founding sponsor of MIT’s Quest for Intelligence. In addition to filling the computing gap at MIT, Satori will be configured to allow researchers to exchange data with all major commercial cloud providers, as well as prepare their code to run on IBM’s Summit supercomputer.
Josh McDermott, an associate professor at MIT’s Department of Brain and Cognitive Sciences, is currently using Summit to develop a better hearing aid, but before he and his students could run their models, they spent countless hours getting the code ready. In the future, Satori will expedite the process, he says, and in the longer term, make more ambitious projects possible.
“We’re currently building computer systems to model one sensory system but we’d like to be able to build models that can see, hear and touch,” he says. “That requires a much bigger scale.”
Richard Braatz, the Edwin R. Gilliland Professor at MIT’s Department of Chemical Engineering, is using AI to improve lithium-ion battery technologies. He and his colleagues recently developed a machine learning algorithm to predict a battery’s lifespan from past charging cycles, and now, they’re developing multiscale simulations to test new materials and designs for extending battery lifeWith a boost from a computer like Satori, the simulations could capture key physical and chemical processes that accelerate discovery. “With better predictions, we can bring new ideas to market faster,” he says.
Satori will be housed at a silk mill-turned data center, the Massachusetts Green High Performance Computing Center (MGHPCC) in Holyoke, Massachusetts, and connect to MIT via dedicated, high-speed fiber optic cables. At 150 kilowatts, Satori will consume as much energy as a mid-sized building at MIT, but its carbon footprint will be nearly fully offset by the use of hydro and nuclear power at the Holyoke facility. Equipped with energy-efficient cooling, lighting, and power distribution, the MGHPCC was the first academic data center to receive LEED-platinum status, the highest green-building award, in 2011.
“Siting Satori at Holyoke minimizes its carbon emissions and environmental impact without compromising its scientific impact,” says John Goodhue, executive director of the MGHPCC.
Visit the Satori website for more information.
Story image credit: Helen Hill
 
 
 

Previous Post:
Next Post:

Research projects

A Future of Unmanned Aerial Vehicles
Yale Budget Lab
Volcanic Eruptions Impact on Stratospheric Chemistry & Ozone
The Rhode Island Coastal Hazards Analysis, Modeling, and Prediction System
Towards a Whole Brain Cellular Atlas
Tornado Path Detection
The Kempner Institute – Unlocking Intelligence
The Institute for Experiential AI
Taming the Energy Appetite of AI Models
Surface Behavior
Studying Highly Efficient Biological Solar Energy Systems
Software for Unreliable Quantum Computers
Simulating Large Biomolecular Assemblies
SEQer – Sequence Evaluation in Realtime
Revolutionizing Materials Design with Computational Modeling
Remote Sensing of Earth Systems
QuEra at the MGHPCC
Quantum Computing in Renewable Energy Development
Pulling Back the Quantum Curtain on ‘Weyl Fermions’
New Insights on Binary Black Holes
NeuraChip
Network Attached FPGAs in the OCT
Monte Carlo eXtreme (MCX) – a Physically-Accurate Photon Simulator
Modeling Hydrogels and Elastomers
Modeling Breast Cancer Spread
Measuring Neutrino Mass
Investigating Mantle Flow Through Analyses of Earthquake Wave Propagation
Impact of Marine Heatwaves on Coral Diversity
IceCube: Hunting Neutrinos
Genome Forecasting
Global Consequences of Warming-Induced Arctic River Changes
Fuzzing the Linux Kernel
Exact Gravitational Lensing by Rotating Black Holes
Evolution of Viral Infectious Disease
Evaluating Health Benefits of Stricter US Air Quality Standards
Ephemeral Stream Water Contributions to US Drainage Networks
Energy Transport and Ultrafast Spectroscopy Lab
Electron Heating in Kinetic-Alfvén-Wave Turbulence
Discovering Evolution’s Master Switches
Dexterous Robotic Hands
Developing Advanced Materials for a Sustainable Energy Future
Detecting Protein Concentrations in Assays
Denser Environments Cultivate Larger Galaxies
Deciphering Alzheimer’s Disease
Dancing Frog Genomes
Cyber-Physical Communication Network Security
Avoiding Smash Hits
Analyzing the Gut Microbiome
Adaptive Deep Learning Systems Towards Edge Intelligence
Accelerating Rendering Power
ACAS X: A Family of Next-Generation Collision Avoidance Systems
Neurocognition at the Wu Tsai Institute, Yale
Computational Modeling of Biological Systems
Computational Molecular Ecology
Social Capital and Economic Mobility
All Research Projects

Collaborative projects

ALL Collaborative PROJECTS

Outreach & Education Projects

See ALL Scholarships
100 Bigelow Street, Holyoke, MA 01040