Menu

Not too hot, not too cold but still, is it just right?

July 1, 2020

Modelers at UMass Lowell use MGHPCC computers to assess whether the close stellar proximity of a recently discovered Red-dwarf orbiting, Earth-like exoplanet could negatively impact its effective habitability.

Reporting by Helen Hill for MGHPCC
Ofer Cohen is an assistant professor in the Department of Physics and Applied Physics at the University of Massachusetts Lowell with interests in heliophysics, exoplanets, stellar astrophysics, space weather, and planetary atmospheres. The models he develops and runs are computationally expensive calling for high-performance computing technology on supercomputers to work. For the calculations needed for a recent paper probing the potential habitability of the recently discovered exoplanet TOI 700 d, the first Earth-size habitable-zone world discovered by TESS orbiting a small, cool M dwarf star, Cohen and his team turned to high-performance computing resources at the MGHPCC.
“The field of exoplanets (planets outside of our own solar system) is driven by our search for life beyond Earth,” Cohen explains. “Traditionally, a planet is considered “habitable” (able to sustain life) if its surface temperature allows liquid water to exist on its surface (ie, not too hot and not too cold). This depends, to first order, on the brightness of the host star and the planet’s distance from it, since these control the incoming stellar radiation. Based on this idea, we planetary scientists define a “Habitable Zone” around a star within which planets have the potential to support life. This habitable zone will be further from the star for bright stars, closer when stars are fainter.”
“Red-dwarfs are the most common stars in the universe. They are about one-tenth to half of the Sun in size and mass, and they are the coolest and faintest of all main-sequence stars,” Cohen continues. “Scientists commonly think about Red-dwarf systems as scaled-down versions of our own solar system,” he says. “Since Red-dwarfs are the faintest of all stellar types, their habitable zone is located very close to the star. Conveniently this makes it easier to detect planets in the habitable zone, since close-in planets cover a larger fraction of the stellar disk when viewed through a telescope, and they transit (move in front of) their host stars more frequently due to their short orbital period.”
“So far, for this reason, it has been understood that the probability of detecting rocky, Earth-like planets orbiting Red-dwarf stars in the habitable zone is high,” says Cohen. “Couple that with the observation that  Red-dwarf stars are the most common in the universe, habitable planets should be very common.”
“Certainly the intuitive definition of habitability I’ve described is very reasonable as a starting point for studying habitable planets,” says Cohen, “However, one needs to keep in mind that planets are not affected only by their radiation environment, but also by their physical, space environment. In particular, the physical parameters of the space environment of Red-dwarfs, such as plasma density, pressure, and magnetic field do not scale with the luminosity and are actually very high at close-in orbits.”
As a result, Cohen explains, planets orbiting Red-dwarf stars in the habitable zone may reside in an extreme space environment that can strip their atmospheres over time, in a similar manner to what scientists believe happened on Mars. “In order to sustain their atmospheres, these planets would need either a strong internal magnetic field or begin with a particularly thick atmosphere,” he explains. “It is not clear that either is a requirement for close-in planets orbiting Red-dwarf stars.”
Exploring this idea In a recent paper, Cohen, working with colleagues at the Harvard-Smithsonian Center for Astrophysics, the University of Arizona, NASA Goddard, and the Leibniz Institute for Astrophysics in Potsdam Germany undertook an investigation of how space environment conditions near the recently discovered Earth-size planet TOI 700 d might influence the planet’s habitability.
Using a set of numerical models for the stellar corona and wind, the planetary magnetosphere, and the planetary ionosphere the team drove their simulations using a scaled-down stellar input and a scaled-up solar input to obtain two independent solutions.
Cohen says, “We found that for the parameters we used, the stellar wind conditions near the planet were actually not so very extreme leading us to conclude that the space environment near TOI700-d may not be extremely harmful to the planetary atmosphere,  however, this assumes the planet resembles Earth. The stellar input parameters and the actual planetary parameters are in fact unconstrained, and different parameters may result in a much greater effect on the atmosphere of TOI700-d. Certainly, comparing  our results to solar system, solar wind measurement, modest stellar wind conditions may not guarantee atmospheric retention of exoplanets.”
To find out more about this work contact Ofer.
Story image: The three planets of the TOI 700 system, illustrated here, orbit a small, cool M dwarf star. TOI 700 d is the first Earth-size habitable-zone world discovered by TESS. Credit: NASA’s Goddard Space Flight Center

About the Researcher

Ofer Cohen


UMass Lowell Assistant Professor of Physics Ofer Cohen develops and uses numerical models to study plasma physics in the solar atmosphere, the interplanetary space, and stars.
The magnetohydrodynamic code he uses has been developed for over a decade to study plasma physics in the solar system, and Cohen has been instrumental in extending its use to astrophysical problems, such as stellar atmospheres, stellar winds, and exoplanets.
Cohen’s research involves interdisciplinary studies covering a wide range of topics from solar and space physics and planetary science to astrophysics and exoplanets. He bases his research approach on the assumption that plasma physics processes are universal, so we can apply the detailed information we have from our own solar system to study astrophysical problems that are less constrained.

Publication

Ofer Cohen, C. Garraffo, Sofia-Paraskevi Moschou, Jeremy J. Drake, J. D. Alvarado-Gomez, Alex Glocer, and Federico Fraschetti (2020), The Space Environment and Atmospheric Joule Heating of the Habitable Zone Exoplanet TOI700-d, arXiv:2005.11587 [astro-ph.SR]

Related

NASA Planet Hunter Finds its 1st Earth-size Habitable-zone World nasa.gov

Links

Ofer Cohen
Physics Department, UMass Lowell
 

Research projects

A Future of Unmanned Aerial Vehicles
Yale Budget Lab
Volcanic Eruptions Impact on Stratospheric Chemistry & Ozone
The Rhode Island Coastal Hazards Analysis, Modeling, and Prediction System
Towards a Whole Brain Cellular Atlas
Tornado Path Detection
The Kempner Institute – Unlocking Intelligence
The Institute for Experiential AI
Taming the Energy Appetite of AI Models
Surface Behavior
Studying Highly Efficient Biological Solar Energy Systems
Software for Unreliable Quantum Computers
Simulating Large Biomolecular Assemblies
SEQer – Sequence Evaluation in Realtime
Revolutionizing Materials Design with Computational Modeling
Remote Sensing of Earth Systems
QuEra at the MGHPCC
Quantum Computing in Renewable Energy Development
Pulling Back the Quantum Curtain on ‘Weyl Fermions’
New Insights on Binary Black Holes
NeuraChip
Network Attached FPGAs in the OCT
Monte Carlo eXtreme (MCX) – a Physically-Accurate Photon Simulator
Modeling Hydrogels and Elastomers
Modeling Breast Cancer Spread
Measuring Neutrino Mass
Investigating Mantle Flow Through Analyses of Earthquake Wave Propagation
Impact of Marine Heatwaves on Coral Diversity
IceCube: Hunting Neutrinos
Genome Forecasting
Global Consequences of Warming-Induced Arctic River Changes
Fuzzing the Linux Kernel
Exact Gravitational Lensing by Rotating Black Holes
Evolution of Viral Infectious Disease
Evaluating Health Benefits of Stricter US Air Quality Standards
Ephemeral Stream Water Contributions to US Drainage Networks
Energy Transport and Ultrafast Spectroscopy Lab
Electron Heating in Kinetic-Alfvén-Wave Turbulence
Discovering Evolution’s Master Switches
Dexterous Robotic Hands
Developing Advanced Materials for a Sustainable Energy Future
Detecting Protein Concentrations in Assays
Denser Environments Cultivate Larger Galaxies
Deciphering Alzheimer’s Disease
Dancing Frog Genomes
Cyber-Physical Communication Network Security
Avoiding Smash Hits
Analyzing the Gut Microbiome
Adaptive Deep Learning Systems Towards Edge Intelligence
Accelerating Rendering Power
ACAS X: A Family of Next-Generation Collision Avoidance Systems
Neurocognition at the Wu Tsai Institute, Yale
Computational Modeling of Biological Systems
Computational Molecular Ecology
Social Capital and Economic Mobility
All Research Projects

Collaborative projects

ALL Collaborative PROJECTS

Outreach & Education Projects

See ALL Scholarships
100 Bigelow Street, Holyoke, MA 01040