Menu

Physics-driven Drug Discovery

June 19, 2019

Reporting by Helen Hill for MGHPCC News
MGHPCC industry partner Silicon Therapeutics’ innovative research uses the Center’s facilities to host its physics-based simulation platform for advanced drug discovery and design.

Silicon Therapeutics, a fully integrated physics-driven drug discovery company, is one of several Massachusetts-based biotechnology companies now partnering with the Massachusetts Green High Performance Computing Center (MGHPCC) to capitalize on the Center’s pre-eminent research computing facilities.
Simulating biological systems at the atomic scale reveals important information about drug targets. Silicon Therapeutics is using their proprietary physics-based simulation platform to advance therapeutics toward curative outcomes for patients with currently unmet medical need, with a particular focus on innate immunity in cancer and inflammation. Their initial drug discovery program has produced first-in-class small molecule STING agonists that shows activity across all known isoforms of the human STING protein and demonstrate potent anti-tumor activity in vivo.
"At Silicon, we are running massive simulations based on quantum mechanics and molecular dynamics to design novel molecules for previously undrugged targets,” explains Dr Woody Sherman, the company’s CSO. “We also run simulations to determine the effect of disease-driving genetic mutations on protein conformation and how that relates to functional activity, which allows us to devise our drug design strategy for key biological targets."
Biological molecules such as proteins are constantly in motion in a complex environment consisting of water, cofactors (chemicals that assist enzymes during the catalysis of reactions), ions, and other biological molecules. In many cases, the dynamic nature of proteins is essential for their function. Sherman says, "The physics-based simulation platform we have developed closely represents the real dynamic nature of protein targets, enabling us to gain deep insights into the biomolecular recognition process associated with targets that were previously considered ‘undruggable’."
Silicon Therapeutics’ current high-performance computing (HPC) platform is comprised of both internal and cloud resources, however,  most of the company’s drug discovery workloads run on Neo, a cluster with more than 300 GPUs and over a thousand CPUs housed in five racks at MGHPCC. Neo’s first-generation nodes have Intel Xeon processors for a total of 16 cores and 64 GB of memory. The more recent nodes have Intel Skylake processors, with 16 cores and 96 GB of memory. Altogether, the system has almost 3 petaflops of peak single-precision performance from almost a million Nvidia GPU cores for running CUDA and OpenCL jobs. Neo runs Ubuntu OS and utilizes Slurm for job scheduling.
“It has been a pleasure to work with MGHPCC,” says Sherman. “It is a state-of-the-art research computing facility run by HPC veterans who know the challenges associated with executing big workloads. In addition, housing dedicated computing resources at the MGHPCC has allowed us to scale our compute infrastructure to the level needed to maximally impact our drug discovery projects.”
The first drug discovery project at Silicon Therapeutics has focused on STING (Stimulator of Interferon Genes), a master regulator of type I interferons and a key mediator of innate immunity. Activation of STING provides two critical anti-tumor features:

  1. The “spark” for initiating a robust innate immune response.
  2. Enhancement of the adaptive immune response.

Using its platform, Silicon Therapeutics has successfully designed first-in-class small molecule STING agonists that show activity across all known isoforms of the human STING protein and demonstrate potent anti-tumor activity in vivo. Using their physics-driven discovery engine, plus cutting-edge capabilities in biology, chemistry, and biophysics, Silicon Therapeutics has developed small molecule agonists of STING that exhibit activity across all known isoforms of the human protein. When dosed via intravenous administration our small molecule STING agonists show potent anti-tumor activity in mice bearing syngeneic tumors.
Other drug discovery projects in the Silicon Therapeutics pipeline can be found on their website: https://silicontx.com/pipeline/

Links

https://silicontx.com/

Related

Three Massachusetts Biotech Companies Leverage MGHPCC
 
 
 
 

Research projects

A Future of Unmanned Aerial Vehicles
Yale Budget Lab
Volcanic Eruptions Impact on Stratospheric Chemistry & Ozone
The Rhode Island Coastal Hazards Analysis, Modeling, and Prediction System
Towards a Whole Brain Cellular Atlas
Tornado Path Detection
The Kempner Institute - Unlocking Intelligence
The Institute for Experiential AI
Taming the Energy Appetite of AI Models
Surface Behavior
Studying Highly Efficient Biological Solar Energy Systems
Software for Unreliable Quantum Computers
Simulating Large Biomolecular Assemblies
SEQer - Sequence Evaluation in Realtime
Revolutionizing Materials Design with Computational Modeling
Remote Sensing of Earth Systems
QuEra at the MGHPCC
Quantum Computing in Renewable Energy Development
Pulling Back the Quantum Curtain on ‘Weyl Fermions’
New Insights on Binary Black Holes
NeuraChip
Network Attached FPGAs in the OCT
Monte Carlo eXtreme (MCX) - a Physically-Accurate Photon Simulator
Modeling Hydrogels and Elastomers
Modeling Breast Cancer Spread
Measuring Neutrino Mass
Investigating Mantle Flow Through Analyses of Earthquake Wave Propagation
Impact of Marine Heatwaves on Coral Diversity
IceCube: Hunting Neutrinos
Genome Forecasting
Global Consequences of Warming-Induced Arctic River Changes
Fuzzing the Linux Kernel
Exact Gravitational Lensing by Rotating Black Holes
Evolution of Viral Infectious Disease
Evaluating Health Benefits of Stricter US Air Quality Standards
Ephemeral Stream Water Contributions to US Drainage Networks
Energy Transport and Ultrafast Spectroscopy Lab
Electron Heating in Kinetic-Alfvén-Wave Turbulence
Discovering Evolution’s Master Switches
Dexterous Robotic Hands
Developing Advanced Materials for a Sustainable Energy Future
Detecting Protein Concentrations in Assays
Denser Environments Cultivate Larger Galaxies
Deciphering Alzheimer's Disease
Dancing Frog Genomes
Cyber-Physical Communication Network Security
Avoiding Smash Hits
Analyzing the Gut Microbiome
Adaptive Deep Learning Systems Towards Edge Intelligence
Accelerating Rendering Power
ACAS X: A Family of Next-Generation Collision Avoidance Systems
Neurocognition at the Wu Tsai Institute, Yale
Computational Modeling of Biological Systems
Computational Molecular Ecology
Social Capital and Economic Mobility
All Research Projects

Collaborative projects

ALL Collaborative PROJECTS

Outreach & Education Projects

See ALL Scholarships
100 Bigelow Street, Holyoke, MA 01040