Menu

UMASS Researcher Receives NSF Grant for GPU-Enabled HPC Cluster at MGHPCC

November 21, 2019

GPU facilities will be made available to researchers through Internet2 links and regional computing partnerships at MGHPCC.Read this story at umass.edu
To support a broadly shared Graphic Processing Unit (GPU)-enabled high-performance computing cluster for the Institute for Applied Sciences (IALS), computational biophysicist Jianhan Chen, chemistry and biochemistry and molecular biology, with others, recently was awarded a two-year, $415,000 grant from the National Science Foundation (NSF) that will fill what Chen calls “a critical need” for enabling computation-intensive research activities on campus.
Although the UMass system has a traditional shared cluster housed at the Massachusetts Green High-performance Computing Center (MGHPCC) in Holyoke, Chen points out, the current cluster has “minimal GPU capacity” and the campus and IALS need dedicated GPU computing hardware to support their research communities. His co-principal investigators on the project are Erin Conlon, mathematics and statistics, Peng Bai, chemical engineering, Chungwen Liang, IALS director of computational modeling, and Matthew Moore, food science.
“When we put in the grant we solicited comments and surveyed the need from IALS and identified 30 labs that could use it,” Chen explains. “They testified to the need and committed to the cost-share with NSF, which will come from IALS, the College of Natural Sciences, College of Engineering, central IT and the Vice Chancellor for Research and Engagement. This is going to be a really unique entity on campus, and it will have a far-reaching impact,” he predicts. “It will be busy from the get-go.”
“I think NSF saw how much need and support we have. I want to particularly highlight the important contributions of Chris Misra and John Griffin of IT,” he adds. “They have taken the leadership in providing technical support that’s absolutely critical to me and other principal investigators on campus. Without them and their excellent help, this will not work, period.”
The new cluster, once carefully built up by Griffin, Chen and his co-investigators will be managed by the IALS Computational and Modeling Core to provide long-term stability for operation and management, serving 250 IALS-affiliated research labs across 27 departments and seven colleges. “The GPU facility offers high-speed single- and double-precision operations as well as extreme parallelism to enhance current activities that contribute to the open science movement,” project leaders state.
It will also contribute to efforts to integrate regional education, outreach, diversity, and economic activities, as the GPU facilities will be made available to researchers through Internet2 links and regional computing partnerships at MGHPCC. The researchers predict that the new cluster “will most likely lead to new developments and discoveries including novel GPU-enabled modeling and simulation technologies that may elucidate molecular mechanism of drug delivery, computational design catalysts for renewable energy and chemical synthesis, advanced computational analysis tools for next-generation informatics and big data, and improved understanding of risk and resistance to breast cancer.”
 
Story image: Helen Hill

Previous Post:
Next Post:

Research projects

A Future of Unmanned Aerial Vehicles
Yale Budget Lab
Volcanic Eruptions Impact on Stratospheric Chemistry & Ozone
The Rhode Island Coastal Hazards Analysis, Modeling, and Prediction System
Towards a Whole Brain Cellular Atlas
Tornado Path Detection
The Kempner Institute - Unlocking Intelligence
The Institute for Experiential AI
Taming the Energy Appetite of AI Models
Surface Behavior
Studying Highly Efficient Biological Solar Energy Systems
Software for Unreliable Quantum Computers
Simulating Large Biomolecular Assemblies
SEQer - Sequence Evaluation in Realtime
Revolutionizing Materials Design with Computational Modeling
Remote Sensing of Earth Systems
QuEra at the MGHPCC
Quantum Computing in Renewable Energy Development
Pulling Back the Quantum Curtain on ‘Weyl Fermions’
New Insights on Binary Black Holes
NeuraChip
Network Attached FPGAs in the OCT
Monte Carlo eXtreme (MCX) - a Physically-Accurate Photon Simulator
Modeling Hydrogels and Elastomers
Modeling Breast Cancer Spread
Measuring Neutrino Mass
Investigating Mantle Flow Through Analyses of Earthquake Wave Propagation
Impact of Marine Heatwaves on Coral Diversity
IceCube: Hunting Neutrinos
Genome Forecasting
Global Consequences of Warming-Induced Arctic River Changes
Fuzzing the Linux Kernel
Exact Gravitational Lensing by Rotating Black Holes
Evolution of Viral Infectious Disease
Evaluating Health Benefits of Stricter US Air Quality Standards
Ephemeral Stream Water Contributions to US Drainage Networks
Energy Transport and Ultrafast Spectroscopy Lab
Electron Heating in Kinetic-Alfvén-Wave Turbulence
Discovering Evolution’s Master Switches
Dexterous Robotic Hands
Developing Advanced Materials for a Sustainable Energy Future
Detecting Protein Concentrations in Assays
Denser Environments Cultivate Larger Galaxies
Deciphering Alzheimer's Disease
Dancing Frog Genomes
Cyber-Physical Communication Network Security
Avoiding Smash Hits
Analyzing the Gut Microbiome
Adaptive Deep Learning Systems Towards Edge Intelligence
Accelerating Rendering Power
ACAS X: A Family of Next-Generation Collision Avoidance Systems
Neurocognition at the Wu Tsai Institute, Yale
Computational Modeling of Biological Systems
Computational Molecular Ecology
Social Capital and Economic Mobility
All Research Projects

Collaborative projects

ALL Collaborative PROJECTS

Outreach & Education Projects

See ALL Scholarships
100 Bigelow Street, Holyoke, MA 01040